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Abstract

Although there have been studies of the temperature regimes within flowers, micrometeorology within stems seems to have been
overlooked. We present ideas, hypotheses, and a diagrammatic model on the biophysical and thermodynamic processes that
interact in complex ways to result in elevated temperature regimes within hollow stems of herbaceous plants. We consider the
effects of the ambient air around the stems, the possible importance of insolation, and greenhouse effects as influenced by stems’
orientation and optical properties, i.e., reflection, absorption, emissivity, translucence, pigmentation, and thermal conductivity.
We propose that greenhouse effects contribute significantly to and are influenced by the above phenomena as well as by the gross
anatomy (volume:surface ratio; wall thickness), evapotranspiration, and the thermal properties of the gas mixture in the lumen.
We provide examples of those elevated temperatures that can be several degrees Celsius above the temperature of the surrounding

atmosphere.
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Introduction

There is a long history of scientific interest in the thermal
regimes within structures of herbaceous plants. Metabolic heat
generation in the blossoms of Araceae is well studied
(Lamarck 1777 (in Cooke 1882); Gibernau et al. 2005; Zhu
et al. 2011). The capture of solar radiation by diaheliotropic
bowl-shaped (parabolic or spherical-sections) flowers (Kevan
1975, 1989; Kjellberg et al. 1982; Galen 2006; Zhang et al.
2010) has been investigated, especially in Arctic and alpine
habitats. Some flowers and inflorescences absorb solar radia-
tion directly (Kevan 1989) and some are notoriously
diaheliotropic (e.g., sunflower Helianthus annuus
(Asteraceae) Atamian et al. 2016). Some, with enclosed caly-
ces or corollas function as microgreenhouses (Kevan 1989;
McKee and Richards 1998), which, as with anthesed flowers
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(McKee and Richards 1998), we suggest may result in the
heating of floral buds and so speed development (see
Distifano et al. 2018). Yet other flowers capture convected
heat (Kevan 1989).

Despite documentation of those heating mechanisms in
floral structures, it seems that heat capture in hollow stems
of herbaceous stems has been overlooked. Cooke (1882) in
his review of temperatures within plant parts made no mention
of stem temperatures, similarly Kerner von Marilaun (1902)
mentioned temperatures within flowers but not within stems.
Microclimatology within hollow stems seems to have been
restricted to studies on CO,, as in some alpine plants of
Wyoming (Billings and Godfrey 1967) and in bamboo
(Bambusa vulgaris) (Zachariah et al. 2016).

The importance of hollowness in herbaceous stems in
biomechanics relates the ratio of plant mass to buckling
strength (Niklas 1992; Niklas and Spatz 2012) as a key
parameter. Hollow tubes resist buckling with far less mass
than do solid cylinders. Despite that accepted idea, there
seem to be no reviews of the incidence of hollowness in
stems of herbaceous plants from the viewpoints of taxon-
omy, biogeography, or seasonality. However, it has been
noted that the hollow stems in alpine plants may be an
adaptation to recycling respiratory CO, for use in photo-
synthesis (Billings and Godfrey 1967).
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In this manuscript, we present our ideas regarding heating
and heat transfer processes in hollow stems of herba-
ceous plants playing important roles in the complex in-
teractions of form, function, metabolism, and growth
(Fig. 1, Box 1).

Box 1. Parameters for measuring the microthermic re-
gimes, heating, and heat transfer processes with the hollow

stems of herbaceous plants. We draw special attention to the
complex and comprehensive study by Pincebourde and Casas
(2006) on the thermal ecology of insect-created leaf-mines.
Notations to Fig. 1 refer to Fig. 1 as part of the present paper
and followed by letter and number to designate the process
identified in Fig. 1. Literature references are made to particu-
larly relevant publications for the particular points noted.

—

. GENERAL

I.1 Time & Date: Required for calculations/estimations of intensity of solar radiation.

1.2 Irradiance (Fig. 1 process A): Direct measurements.

1.3 Ambient air temperature: Direct measurements (re: Fig. 1 process 4).

1.4 Wind speed: Direct measurements for consideration of cooling rates (wind-chill) (re: Fig. 1 process 4) (Pincebourde and Casas 2006).
1.5 Atmospheric saturation deficit: Direct measurements. May influence rates of cooling by transpiration and wind-chill (re: Fig. 1 process 4).

II. PLANT (STEM) SURFACE

II.1 Orientation: Observation and angular orientation with respect to vertical. This is needed to accommodate angle of incidence of solar radiation.
1.2 Temperatures: Infrared thermometry (Atamian et al. 2016 Fig. 3C; Dietrich and Kémer 2014).

11.3 Emissivity (Fig. 1 processes 1 & 3 outside stem): Infrared thermometry (ratio of energy radiated from stem surface to that which would be radiated
by a black body under the same conditions). Needed for accurate non-contact temperature measurements of the stem surface and heat transfer

calculations (Ribeiro da Luz and Crowley 2007; Chen 2015).

11.4 Reflectivity (Fig. 1 process 1): Reflectance spectrophotometry by waveband. General reflectance of vegetation is about 15%, but
variable between species (e. g., Allen etal. 1969; Gausman and Allen 1973 for near IR; Kevan and Backhaus 1998; Chittka et al.

1994; Omori et al. 2000 for UV to near IR).
II. PLANT (STEM) CHARACTERISTICS

III.1 Pigmentation: Plant pigments are well studied with respect to their extraction from plant tissue through to their chemistry and molecular genetic

expressions (Lee 2007).

1.2 Pigment placement: Surficial, epidermal, mesophilic, etc. affects specular to diffuse reflection and coloration in animal visible range (Kevan and
Backhaus 1998; van der Kooi et al. 2016, 2017) and the near IR (Allen et al. 1969; Gausman and Allen 1973).

1.3 Cellular anatomy: Relates to II1.2 in respect of pigments in organelles (plastids) or in solution in cytoplasm.

111.4 Heat Conductance (Fig. 1 processes 2la, 2lo & 6) also from outside the stem (Fig. 1 process 4 and re: comments 1.3—5 above) (see Pincebourde

and Casas 2006).

1.5 Transmission (Translucence) (Fig. 1 processes 2la, 2lo & 3): See comment I11.2 and McKee and Richards (1998); Omori et al. (2000).

IV. PLANT MORPHOLOGY
IV.1 Stem diameter and length: Direct measurements.
IV.2 Stem wall thickness: Direct measurements.

IV.3 Lumen diameter & volume: Direct measurements. Size of the lumen may influence thermodynamics of heat exchange and movement (Fig. 1

processes 7-10).
IV.3.a Lumen volume: Lumen diameter x length.

IV.3.b Septate or not: Spacing and distance between septa (lumen volumes between septa).

IV.4 Inside wall:

IV.4.a Smooth, shiny, hairy, pithy: By observation, scores and possibly measurements. Reflective to insulative properties seem unstudied.

V. LUMEN ENVIRONMENT

V.1 Temperature: Direct measurements by thermocouples or thermistors.

V.2 EM reflection & absorption (Fig. 1 process 5):

V.3 Atmospheric Chemistry (Fig. 1 process 7) as circulating/diffusing (Fig. 1 process 9) greenhouse gas mixture (Billings and Godfrey 1967,

Zachariah et al. 2016).

Our interest in hollowness being adaptive for heat gain
applies to growth rates of stems in their lofting reproductive
structures to conspicuousness for floral presentation, pollina-
tion, and then for seed dispersal. We note that although there
may be fuel and nutrients for growth and elongation of the
above ground parts of herbaceous plants stored in below
ground parts (roots, bulbs, corms, tubers, etc.), warmth is
needed for metabolism to occur. We hypothesize that hollow-
ness within plant parts promotes heating by the greenhouse
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effect, and thereby provides the energy boost needed to accel-
erate metabolism and growth beyond what might be otherwise
feasible at ambient atmospheric temperatures.

For ornamentals, rapid growth is important for stature.
Alternating hot and cold stimulates stem elongation in e.g.,
Chrysanthemum production (Carvalho et al. 2002). Spring
bulbs (e.g., daffodils, tulips, etc.) grow rapidly, even in cold
weather, at rates that exceed those expected by mean ambient
air temperatures alone. Similarly, many other tall, showy
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Fig. 1 Plants’ stems become warmed by a complex of thermal processes
(identified by numbers and letters) involving radiative, conductive, and
convectional heating. Apart from the influence of the temperature of the
ambient air (not shown) is the likely contribution of solar electromagnetic
radiation (UV-Visible-IR) (A). Some impinging radiation is reflected (1),
some is absorbed (2) and some is transmitted (3) through the tissue (trans-
lucence). Absorbed radiation is conducted through the stem’s tissue (lat-
erally and longitudinally) (2la; 2lo). It is lost to the stem tissue by radia-
tion (3) and conduction (4) to the outside and inside (lumen) of the stem.
Transmitted radiation (3) and/or conducted (4) contributes additional en-
ergy to the lumen of the stem. Within the stem, radiant energy (3), like the
impinging solar EMR, can be a) reflected (5), b) absorbed by stem tissue
(6) from within, and also c) absorbed by the moist atmospheric gas in the

ornamentals elongate their flowering stems quite rapidly in
spring and early summer.

Hollowness is well known in grass culms (Poacaca)
and in umbelliferous stems (Apiaceae). That the pedun-
cles of daffodils and tulips, of dandelions and some other
Asteraceae are hollow is common knowledge. A casual
survey of about 120 species of herbaceous plants (except-
ing Poaceae) growing in southern Canada (Ontario and
Quebec), in northern Manitoba around Churchill, and in
Scotland and England in summer 2017 indicates that
about 60% have hollow stems. Figure 2 illustrates some
hollow stems of common herbaceous plants from southern
Ontario, Canada. The anatomy of hollowness ranges from
thin-walled and wide lumen tubes, making almost trans-
lucent stems (as in Impatiens spp., Taraxacum spp.,
Equisetum spp., Fallopia japonica) to thick-walled stems
with or without apparent pith and narrow lumens. Some
stems are solid.

lumen (7). The energy absorbed by the internal atmosphere (7) contrib-
utes to the thermal environment within the stem by heat exchange by
conduction (8), convection (9), and re-radiation (10). The dynamics of
how the thermal environment in hollow stems is generated involves var-
ious complex processes that result the rise in temperature measurable by
various thermometric instruments. Heated stems liberate their energy
through radiation (measurable as Emissivity; 3) and conduction (4) to
the surrounding air (or water in the case of aquatic plants). Some of the
heat generated within the stem is conducted elsewhere in the plant by the
liquid in conductive tissues (phloem and xylem; 2lo), some of the EMR is
used in photosynthesis, and thermal energy is used in metabolism (not
shown). Some further explanations and comments are given in Box 1

Materials and methods

In 2017, casual surveys were made of herbaceous plants in
various locations in Quebec, Ontario, and Manitoba in
Canada, in Angus in Scotland, and in Nottingham and
Yorkshire in England. The common and conveniently avail-
able plants were simply chosen and identified in the field and
cut with a pair of secateurs and whether or not they had hollow
stems that were noted.

Temperature measurements within hollow stems were
made in various locations in Canada (Table 1) by inserting
copper-constantan thermocouples (36 gauge SSRTC-TT-T-
36-36 from Omega Canada Inc.) into the lumen of the stems
and as left hanging in the air within 2 cm of the point of
insertion and in the shade of the study plant. The temperatures
from the thermocouples were recorded on an Omega HH147
RS 232 data Logger Thermometer (accuracy +0.7 °C and
response time of <0.5 min (the minimum time interval

@ Springer



Int J Biometeorol

Fig. 2 Representative examples
of hollow stems with approximate
outside diameters (od) from her-
baceous plants: top right, dande-
lion (Taraxacum officinale
(Asteraceae)) ca. 3 mm od; top
middle, common reed
(Phragmites australis (Poaceae))
ca. 7 mm od; top left, jewelweed,
touch-me-not (Impatiens capensis
(Blasaminaceae)) ca. 5 mm od;
bottom right, chicory (Cichorum
intybus) (Asteracea)) ca. 4 mm
od; bottom middle, water hem-
lock (Cicuta virosa (Apiacaea))
ca. 11 mm od; bottom left,
Japanese knotweed (Fallopia
Japonica (Polygonaceae)) ca.

8 mm od. (Photographs from liv-
ing specimens collected around,
Guelph, Ontario, Canada on 7
August, 2018)

between recorded temperatures)) as spot readings alternating
between the stem and ambient air. At the same time as the
temperatures were being recorded, the general conditions of
sunshine and shade were recorded.

The temperatures within and outside the hollow stems were
compared statistically by Student’s 7 test under the null hy-
pothesis that there is no difference in temperatures.

Results

From the casual surveys of the incidence of hollow stems from
120 species of temperate zone herbaceous plants, we recorded
75 with hollow stems. Stems that were occluded with pith
were scored as solid.

Herein, we report briefly on temperatures within flowering
stems of several herbaceous plants (Table 1). In jewel weed
(Impatiens capensis) with thin, transparent, hollow stems,
stem temperature excess of over 3 °C occurs in sunshine,
but about — 0.5 °C in shade. Black-eyed Susan (Rudbeckia
hirta) with thicker stems, pith and a narrow lumen, stem tem-
perature excesses in sunshine are about 1.3 °C. In Mastodon
flower (Senecio congestus) with its wide lumen and pubes-
cent, thin-walled stem can reach 4 °C of stem temperature
excess in sunshine. Under cloudy sunshine, the insides of
stems of Anthriscus silvestris were about 2.5 °C warmer than
ambient air. In 2018, we examined dandelions (7Taraxacum
officinale) and found temperatures in flowering stems up to
8 °C warmer than the ambient air in sunshine, but below the
temperature of the ambient air in shade.

@ Springer

Discussion

We propose, in this conceptual paper, that the thermal envi-
ronment inside hollow stems is determined by several closely
linked and complex biophysical interactions that include ab-
sorption of solar radiation, reflection of some of that energy,
conduction in the stem tissues radially from the radiatively
heated stem walls outside to within, liberation of heat by re-
radiation and conduction to the lumen of the hollow stems,
where it can be absorbed by greenhouse gases (water vapor
and CO,) and circulated by convection (Fig. 1, Box 1).
Cooling, as indicated by stem temperatures that were lower
than ambient in shade, may be explained by movement of cool
soil moisture in the vascular tissue and by evapotranspiration.
The extent to which all the aforementioned thermal processes,
all of which require experimental verification, contribute indi-
vidually to determine the thermal environment inside the stem
and the lumen also depends on environmental conditions like
ambient temperature and relative humidity, the values of the
different geometric parameters that characterize hollow stems,
e.g., radial thickness and height of the stem, the stems’ thermal
properties, e.g., absorptivity and emissivity of interior and
exterior stem walls, and thermal conductivity and capacity
of the plants’ stem tissues. In Box 1, we provide an initial list,
with comments, of the parameters which we think contribute
to the thermal regimes within hollow stems. The comprehen-
sive study by Pincebourde and Casas (2006) on how modifi-
cations of leaf tissue transmittance caused by insect-created
leaf mines affected the insects’ metabolic activities and body
temperatures illustrates the complexity of studying, modeling,
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and understanding the microthermic regimes within plant
structures.

Understanding the biological role of hollow stems in plant
physiology may have practical implications. A greater under-
standing of hitherto unknown mechanisms in plant growth
may reduce dependence on some resources, because it possi-
bly influences water relations, fertilization and irrigation, plant
growth, stature, and mechanical strength against drooping of
floral heads, leading to new approaches to resource optimiza-
tion (heat, hormones, other chemicals) by the floricultural sec-
tion, for example. It may also contribute in mitigating the
effects of plant diseases and pests.

We expect to explore the intuitive word model and dia-
grammatically presented interactions (Fig. 1) according to
the parameters we identify (Box 1) with respect to the biogeo-
graphic, ecological and taxonomic incidence for hollow-
stemmed herbaceous plants, the mechanisms of intra-stem
thermodynamics, and their implications for plant growth, re-
production and maturation in nature and in floriculture.
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